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NASA TT F-10,743

DESIGN OF THE CYLINDRICAL SHELL FOR CYCLIC LOADING

N. Petrova-Deneva (Sofiya)

ABSTRACT. The asymptotic integration method, previously
used for the design of shells of revolution for cyclic
loading, is used to obtain a solution for the closed
cyclic shell of random cross section subjected to cyclic
loading.

Previously [1] the asymptotic integration method was used for the design
of shells of revolution for cyclic loading. In this article a solution of
equations by means of this method was obtained for the closed cyclic shell of
random cross section subjected to cyclic loading.

1. Let us take an equation of the inner surface of the cylindrical
shell in the form

r=¢i+yi+ zk (1.1)

Here £ is the coordinate along the generatrix, y =y (n) and z = z (n)
are the equations for the cross section of the cylinder where n is the coor-
dinate along this line, where the first quadratic form of the cylinder is
ds? = dg? + dn2.

Since £ = ¢ and n = ¢ are the lines of curvature along the inner surface
of the shell, the principal radii of curvature are

T p—=p(n) (1.2)

Let us introduce the dimensionless coordinates o and B

€= Xas n T AB (1.3)

Here )\ is some characteristic radius of curvature of the cross section of
the cylinder. In this case

ds? = A2 (do? + dg?) (1.4)
and p is a function of B.

As a starting equation let us take [2]

L (W) +h°N (W) =0 (1.5)

*Numbers in the margin indicate pagination in the foreign text.
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where the differential operators L and N for the cylindrical shell acquire the
form

i1 We 4 (0 Ly @ 0N
= A e i v
b= v P g T oxdug 03y (1.6)

Equation (1.5) is used for the design of a cylindrical shell making the
following assumptions:

1) The shell must not be extremely long.

2) For each cross section function p should not have significant rela-
tive deviations from some mean value of p,.

3) The shape of the cross section should not have areas with sharply
changing curvature, so that during differentiation with respect to B the quan-
tity ¢ would not change significantly.

Let us consider four groups of boundary conditions when the cross sec-
tions of the cylinder a = a, (j = 1.2), displacements Uy, Vi, Wy and the angle
of rotation Y; will have thd values

uy = €08 &P, vy =0, wy=10, =20
up = U, vy == sinkP, w; =9, y1 =09
Uy = U, vy == 0, wy) = COS]'.'ﬂ,. Vo= ’ (l '7)

Uy = O, U = O, wy = O, Y1 = COS/{B

assuming that k is a sufficiently large number. Solutions may be obtained by
superimposition when at the boundaries o = a, (j = 1.2) the quantities u;, Vi,
w) and y; are represented in the Fourier series, which do not contain terms
with small values of k.

The solution of Eq. (1.5) is a function of independent variables «, B
and parameters h° and k. The latter are related by

. .- )
ko= (h°)‘t, = ':—_ ¥ (l . 8)

Here exponent t is index of the change of the permissible load. The num-
bers y and t are rational numbers, which, as shown in [3] and [1] does not
decrease their generality.

We shall seek the stressed state of the cylinder, when y is a positive
number or according to (1.8), t < 1/2. 1In .this case, as shown in [3] and [1],
the solution of equation (1.5) has the form

W — W I e HE (1.9)

where the first term is the integral corresponding to the principal stressed
state of the shell, the second term is the integral corresponding to a simple

edge effect, k is a parameter which enters the boundary conditions of Eq. (1.7),

and Y
o= (RO)

(1.10)



The variability functions f and g have the form /107

P = Qo= K7 Ry KT By e kT G R, (1.11)
. , 1 2
Here ¢ is any of the two functions: f or g, and W( ) and W( ) are expressed
as follows
W = W@ e i S, R (r-1) /& M/ri:i) e E'I/V,,(j) (=1, 2) (1.12)

For the principal stressed state and a simple edge effect we shall select
%/¢ in such a manner that a recurrent system of differential equations is ob-
tained (independent of parameter k) with respect to all functions which enter
(1.10), with the exception of the residual terms W, '/ (j = 1.2).

It is known from [3] that when t < 1/2 the form of the integral of the
principal stressed state is a function of the sign of the curvature of the shell.
Since for the cylinders the curvature is equal to zero, operator L in (1.6) will
be parabolic. Its characteristics (double) are determined by the equation g = ¢
and coincide with the rectilinear generatrices of the cylindrical shell. This
means, as we shall see later, that in certain cases the effect of the edge load-
ing is propagated into the interior of the shell along the asymptotic lines of
the cylinder. It follows from here that the principal stressed state of the
cylinder is not always attenuated as one moves further away from the edge along
the generatrix. Thus, in certain cases, for the cylinder the San Venon prin-
ciple is not as clearly pronounced as for shells with positive curvature. In
constructing integrals, corresponding to the principal stressed state, one may
assume that for the variability function, £

%/ = 1/2 (1.13)

Then, taking vy = p/q (p, q are simple whole numbers), one may consider
that in (1.11) and (1.12) we have £ = 2q. This means that

f=fot KPIB s Gl 20, (1.14)

In order to fulfill the conditions of (1.7) it is necessary for the func-
tion £ to have at the boundaries a = o, and a = o, the following values

1 2
f = +ip (1.15)

From this it stems that when o = oy and g = oqy
fo = _—_t lﬁ, fi = 0,..., f2q—p =0 (1.16)

The variability function for the integrals, corresponding to a simple edge
effect, is constructed just as it was done in [1]. According to this we obtain:

ng = k‘1+1/:Y (g0 - k__l/‘.Y a0 + k_.\/z =29 g2 4o - k—lll‘(— (2q-1) / 2q ng+2(1) . (1 . 17)
where at the boundaries o = ay and o = a, we have
G =0, gr==%iB, g=0 (=2, 10+ 20 (1.18)



The nature of the stressed state of the cylindrical shell will depend on
the value of y. Subsequently we shall show that if 0 < y < 2, then for a short
cylinder the stressed state is attenuated in the interior of the shell. How-
ever, when y 3 2 attentuation for the short shell does not occur.

For a cylindrical shell Eq. (1.5) with boundary conditions (1.7) will be
solved for specific values of y, namely when y = 2/3, 1, 2. Here, basically
different principal stressed states are developed in the shell.

2. Let us consider a case when y = 2/3. From (1.14) and (1.17) we ob-
tain the variability function

—ht KR AR, g= gt K a T gt i (2.1)

The boundary conditions for the function f are given by the formulae
(1.16) , and for g by the formulae (l 18). 1In the second expansion of (1.12)
for w 1) we must assume that § = 3.

Let us determine f, g and W (l). For this purpose we shall substitute
the principal stressed state intégral from (1.9) into (1.5), taking into ac-
count (1.6) and reducing by k<e*', we obtain

1 2
VU s ) - (N .
LoWo +k 2‘ .L'/::GPV'/- (1~0) +& / (2] Ll/,cI'Vl/,(g_c) + No]Vo(l)) + (2 . 2)
G=0 o 0=0
3 4
by - 3 i =43 (N
R 1(2‘ Ly, °VV'/' (3'°)+2 N/“’W'/ () ))+I‘ (ZJ L‘/acW‘/a((li—-c)'*'
6=0 0=0 ¢=0
‘*‘Z Ny, oWy, (a«c)) +oeee :
6=0 ) :
The operators Ll/3c have the following form: /108
i gojey = 20 dh g =L{ Oh Y g 020 0l ] (2.3)
Lo = A“p(@a) ;o L, Apoa oa /°l A% (da> da 9%
i (400 @ 8f1 80 , %o 1 [90/1 @ | @, (95:\
Ll:)v"p( da 5x—+251—3?+ aa'J)" L‘/'y Mo~ da da da? <01}J|
- ol (902 @ N gt O
5"““}»353( do oa +0a4/’ © A3 oad
and N and N the form
3 213 No= i {20V 4 (ZeyT] (2.4)
, °—7~7L\é‘d‘> +(%> L
4 [(0[0\*0fr  9[o 0f1 0] /
Vg [(7) 3@ T da oa _;5')

f 2
do | oa da. a da B 0 a4 j}_*‘
dfo 8f1 9fa 3f1 djo 6/0 9. /811)2] ; o(?’W (91\* 4 ’0/0)3 gf_.}
Sba da a;s ap, 42 (5_) [ da da | \oa 337} (rﬁ) ' ‘Ka,’i B’




By equating coefficients of k_]'/30 from (2.2) to zero and keeping in mind
(2.3) and (2.4) we obtain the following differential equations with respect to
£, f , f. and wél). _ )
0° "1’ "2 :
' LV =0, L, W =0, (L, +N)W® =0

(LN )W =0, (Ly +Ny) WP =0 | (2.5)

Substituting operators L0 and Ll/3 into the first two equations of (2.6),
we find the equations for f, and f

0 1
9 90011 ¢
(aa> =0 | (2.6)
Both of these equations and boundary conditions (1.6) are fulfilled when
£, =+ iB.
0 -_—

This occurs because B = ¢ are double characteristics of L. For the cal-
culation of f, we make use of a third equation in (2.5). In addition to opera-

tor L2/3 it includes NO. This means that function fl depends not only on the

momentless, but also on the moment containing operator N. Keeping in mind the

boundary condition (1.16) and formula fo =+ iB, we find

1—+i/p
h=t— (&) @—ap 2.7
From the fourth equation of (2.5) we obtain the function

e (@ 1) (@ — ) (2.8)

Thus, in the case of boundary condition (1.16) the function f acquires
the form

) Y, 1+ /_p_ 1, a__a‘)ik"’“—g,‘(‘“—“i)g
kf = :L'l'fﬁﬂ:k V2 \k) ( ? M ' (2;9)

The first term in the right side of (2.9) gives the solution, which oscil-
lates without attenuation. The sign of the second term is selected to be such
that in the zone, adjacent to the considered edge, the real part would be neg-
ative, i.e. in order for attenuation to take place into the interior.

From the fourth equat}on (2.5), using (2.9) we find a differential equa-
tion for the function wo

oW 4 —i _p_)_’[: i (a_a)z]womz
P Ty (&) —e+ e | (2.10)
The solution of this equation shall be /109
gV = (a4 ib) ¥ (P ‘\”’,(a——cv) _‘l = ‘p’_(a"‘a) e (a ___a.);‘.]l
o o= (a4 ib)e”, ‘P::J_ V’ V) i " i2p¢ Il (2.11)

Here a and b are random functions of B, determined by (1.17). The equa-

: (D 2
tions for Wl/3 and W2/§ ) have the same form as (2.10), but they are now

- homogeneous.



Thus, the integral of the principal stressed state (1.9) has the form
1D K+

In order for the stressed state to be attenuated towards the interiof of
the cylinder, it is necessary for a real part of the exponent kf + ¥ to be
negative. For this purpose it is necessary to limit the length of the shell
1 =) (a9 - a1) by a strong inequality R

| VTS
£

(2.12)
(long shells were excluded from consideration at the beginning of this article).

Let us now determine the variability functions of the edge effect. By sub-
stituting the second term in Eq. (1.9) in the differential Eq. (1.5) and taking
into account (2.1) and (1.17), we obtain the expression

r G G
N TS @ Ny WD = (2.13)

G=0 j=0

The operators L., N, are determined by formulas analogous to (2.3) and
(2.4) in which it isJonl} necessary to replace f by g.

By setting coefficients in front of equal powers of p to zero we obtain
the differential equation for the sought functions 8y 81> 8ps 83 Thus, the
equation for 80 will have the form

Maaa ST (&) =0 (2.14)

We shall solve this equation taking into account the first condition in
(1.18) and impose the requirement on the integral corresponding to a simple
edge effect, to be attenuated from the edge into the interior of the shell.
Taking this into account we seek the solution for (2.14) in the form of a - q,
powers series J

—ts o — o)
o — &y g0\0)+( i) go(l) NN

©= 2 (2.15)

(0) (1)

Here gy » 8y  are derivatives of g with respect to o when o = o, and are
only the functions of B. )

Since when o = a,, g, = 0, then at the boundary @ = o, all of the deriva-
tives of gy with respdct % B(BgO/BB, 32g0/382,...) are equal to zero. Keeping
this in mind and using (2.14) we determine go(ll Differentiating (2.14) with
respect to o and substituting o = @,, we obtain géz), etc, As a result of the
solution of (2.15) for g0 it become

8%go (& — o P

1—i s ,
go= " Vil (“i—) (@—aj)+Feg3f T -



Functions 81> 8y» 8y are determined in a similar manner. From this it

follows that under the boundary conditions of (1.18) function g has the form

m~imsim—%{k “?’*YHJ%‘;‘()ji

.V‘
(= o 1,99 (2.16)
i_TL@p Akﬁ

Since k is a sufficiently large parameter, the sign of the real part of
(2.16) is determined by the terms containing k in the highest power. For
these terms the sign may be selected to be such as to produce the solution
which attenuates in going further away into the interior from the considered

edge.

By comparing the functions of kf and ug we note that the real part of the
first function has a term k%/3 and the second function -- the term k4/3, This
corresponds to the fact that the edge effect is attenuated more rapidly than
the principal stressed state.

3. Let us consider the case when Yy = 1. From (1.14) and (1.17) it fol- /110
lows that functions f and g will have the form

kf = kfo - KPfy, pg = K (go -+ K g+ kg2 (3.1)

Keeping in mind the solutions for these functions, obtained in section 1
at boundary conditions (1.16) and (1.18), we obtain formulae

kf = 4 ikp 4 ke 11'/*‘; (@ — a;) (3.2)
s . s 1—i " 1k o
Hw=imsim—w(kﬂ75-y/3+k’—751/;)i
+ ik p(a—a,)’—}— (3.3)

Since for our case the function w(l) is given bg the second formula in
(1.10) when & = 2, then for the determination of Wé we have the following

differential equation

TV oV _ P (@ —aj) W =
da A \ (3.4)

The solution of this equation is
(3.5)

o (@ —a)
o — (o + ibo) exp s

Here a. and b. are random functions of R.

0 0
(L (1)

For the following functions Wl/2 , Wl we have nonhomogeneous differen-

'tial equations with the same homogeneous part as (3.4).




From (3.2) and (3.5) it follows that the principal stressed state of a
cylinder is attenuated in any direction if the following condition is fulfilled

1<k ﬂ’f;
=

(3.6)

In the first approximation let_us cons%gsr the boundary conditions, which
must be imposed on the functions W( ) and W .

Function W from (1.9), taking into account (3.2) - (3.4), may be written
as follows: .

W = ¥ ((a) + ibs) exprifa — ;) + (1 + idy) explra (@ —a;) + (@ —a)?] + |
+ (az - ibg) exprs (@ — atz) + (c2 + idy) explrs (@ — a2) + r (@ — a2)?]} +
. + ¢ ™ {[(as+ iba) expry (@ — 1) +- (es + ids)oxplrs (@ — o) r (@ — )] + (3.7)
' + (a4 + iba) exprafe — &2) + (ca + ideJexplrs (@ — @) — 7 (@ — a@2)?]}

The boundaries of the cylinder are assigned by the equations a = o, and
a=a, (it is considered that a; < az), and functions r, (i=1, 2, 3, %) and
r have the form

g i+irp\" o
na=FE G E) L ri 3.8)

The sign of these functions was selected to be such that in (3.7) the solu-
tion would attenuate towards the interior of the shell. In (3.7) the quantities

a;, by, ¢, d; (i=1, 2, 3, 4) are random functions of the form

P = ki (Po+ & Py ...+ kP (3.9)
Here PO’ Pl’ ey Pr—l are functions of ¢ and B, independent of parameter
k. The problem lies in formulating boundary conditions for PO'
Taking 2Ehw = w°, we find that
.3 B
: w°=’ILTReW. c=Im W ; (3.10)

The formulas for function uio) = 2Ehul, v£0> = 2Ehvl, Yl°

Nl’ Gl expressed in terms of w° and c are taken from [4].

= 2Ehy;, T, S,

For the cylindrical shell they have the form

/111



u° —Im< —5——5—2+—1~30}V > (3.11)

A ope
v1°=’;‘—sneg—tzd3+1m( S‘ZW _"”V> ho:_%“c%’_
et 2 o e

Analogous formulas may be written for the remaining stresses, moments and
displacements. The formulas (3.11) and formulas similar to them enable deter-
mination of the stressed state of the shell in the first and second approxima-
tion, if the boundary conditions for the factoring coefficients in (3.9) are

known.

Let us determine the shape of boundary conditions in the first approxima-
tion at an edge of the shell a = a, (at the o = o, boundary the conditions are
analogous). If in (3.7) we considér that o = a_ ,"then the terms containing
the exponent o, - o,, will be small, and they may be neglected. Then (3.7)
will acquire the form

W = *¥{(a, + ibs)expri (@ — a) + (a1 4 i) oxp [rale — ar) + r (e — )} +- (3.12)
4 KB {(gy - ibg) exp ry (@ — ;) + (cs + ids)exp [rs (@ — ) — r{e —ay)?]}

Using the Euler formulas, the integral of equation (1.5) may be separated
into two parts, containing factors cos kB and sin kB, respectively.

Taking into account (3.9), we have

a; + az = klA(l), a, — az = kllA(Z), bl + b3 = kmB(l), by — b3 = k'"nBﬂ)
Cy "}‘ €3 = IcT’C(l), ¢ — C3== kP C(Z), d1+ (1.'! s /CqD(l), dl — ds: qu(Z)

and considering that A(J), B(J), C(J) and D(J) are expanded into series in the
* form (3.9).

It is necessary to find the value for function A(J) (J) (J) and D(J)
when o = ay in the first approximation. For this purpose the exponents L, Ql,
m, m,, p, q are determined in such a manner that equations with A(J), B(J)

(J) and DéJ) would have solutions (it is p0331ble to show that the solutlons

w1ll exist for equatioms which determine the same quantities with lower expon-
ents 1, 2...). Let us calculate in the first approximation the functions ul,

v;, wi and yi, 1» Sy» N;» Gy at the boundary a = a; with the use of formulae
(3.11) - (3.13). , ,
b '/a ?\. l/’ 3 3
b o _i_ [( —;E ) (— k¥4, ® 4 g+ BD) 4o (E) (kWD — P* /’Co(l))] co ©8 (3.13)
v7° = <k’+2—%- AoV kmﬂ—:—Bo(D) sin k3, w® = T(A“-"A @ 1 kP3¢, M) cos k3. .
X e Ay s 3
n? = 'l% [(”2%") (K1 4,0 — k™R V) - (7;7) (PG - KTD °m)] cos kB



1
T, =—T2“("m+230(1) + k92D @) cos kB

. v (3.14)
§ = — i KZL;)/ (KB . 1 4,0 (57;_)/ (KT AD,D — kp+'/,co<o))} sin kB |
’ Ni=— > /"‘;/327 (k1 — 11D D) cos kB /
Gi= ___"T—a_ [kl+2cA0(1) 143 % Do — kP*2 (2 —g) Co(l):l cos kB G.15)

Here A(l), Bél), Cél), Dél)

0 designate the boundary values of these quanti-~

ties. In addition, we take into account the fact that A(z), B(z), C(z), Déz)
must equal zero, in order for the factors sin kg and cos kg at ui, vi, wi, yi
in equation (3.14) to be the same as in the case of boundary conditions (1.7).

In subsequent notations we omit factors cos kg and sin kg. /112

The quantities g, m, p, q, selected according to formulae (3.14) at bound-
ary conditions of (1.7) are given in Table 1.

TABLE 1 Making use of Table 1, the boundary condi-
: : tions (1.7) and (3.14) we obtain boundary values
PR PR SO N (L @ @ (D)
ru.—1im 1lwx 1= of A0 , BO , C0 and D0 and then by means
1 ; | of (3.15) and Table 1 we obtain, as in [5], Table
Lo =3 =21 =3 | =Y 2 for elastic reactions. This table is symmetri-
b s —2 | —2 | =9 . . . .
m. | h' -‘ - o cal, as it must be according to the reciprocity
P “Jh —2 A h principle.
g i =83 —2 | —2 | =z
TABLE 2
li w° =1 . v, =1 w =1 ).‘Ylo =1
l
] 5/ A B
ATy | —k 2y 20 —3)p/h; K1(1—25) —k(1—0)(20/M)"
a1 L —2(—a)p/h kR @/ KA ) — K 1
AN, k(1 —23) K2 p) | =K M) Y 2 k:‘*k/p ,
G | —K"(—06)(2p /M) — 3 kA /p — k720 o)

4. Finally, let us consider the case when y = 2. From (1.14) and (1.17)
it follows that functions f and g have the following form

K = kfor Bg = Ko+ kg (4.1)

The values for these functions under boundary conditions (1.16) and (1.18)
will be

. IR TER P e
j =413, lc'-'g:iilcﬁj:k’—-_{/'-—z:<7> (o — o) 4= ik g (o — o)~ v %.2)

10




Here the function f is purely imaginary. This means that when y = 2 the
exponential attenuation (with a large factor in the exponent) of the principal
stressed state along the generatrices of the cylinder is absent.

i Let us turn to construct function W( ) from (1.12). In the considered

case the factor £ must equal 1. Then fo% the determination of Wél) an equation
is obtained

LV + N =0 (4.3)

It includes the operator N,. This means that function W( ) is determined--
taking into account the moment operator N. By substituting ghe value for the

operators L2 and NO into (4.3), we obtain a differential equation for WO

az[VZ(l) . ;_O_IVo(l) =0
o A

(4.4)

For the function W(l) the second order equation was obtained. This occurs

because the lines B = const are double characteristics of the momentless ope-
rator.

The solution of equation (4.4) has the form
2 }_i‘_ Py’ ' , P
"‘.’o“’=rioexp[vz <{—> (“—aﬁ]“}““’[‘ V2 (T) “““ﬁ} =431 4.5
Here AO and B, are unknown»functions of R.

0
él) (1 =2,3,..., r - 1) functions we also have equa-

tion (4.4) but it is nonhomogeneous.

The solution for W(Z) in the integral, corresponding to the edge effect,
can be obtained in the form of the following series with powers of ¢ - o,

P

For the remaining W

a
W()_Co_rt[)o:ti_y_*.—zl<“‘—) A(Co+iDo)(a—a,')'+... ’ (406)

Here C0 and D0 are unknown functions of Rg.

Using formulas (4.2) and (4.5) we obtain the following solutions for the /113
. equation (1.5)

W= {(al -~ iby) exp [ Vz ("i‘) (o0 — th)] - {ag + ibz) exp [17‘::" <_.%_)l/' (@— az)] + 4.7
- (1 + id1) exp [—— I8 1_‘/_- (%) /'(“ — o)+ if»'{)%(a —_ al)'{l L
== (2 == idy) exp [l» V5 (—;:—)/ (@ — o) + ik 5= o 5 (a— ) ]} P

n {(aa L iby) oxp [ 11;—91 ( > ’( onﬂ (a4 _|- ibg) exp [7:_— (79:_)/’ (a— Otz)] +

11



' r i ’
-+ (e3 + idy) exp L— K _1_/7! (7,—) (0 —a)— ik —2"? (& — a1)2] + (4.7)
L—i/ & \1/! o Cont'd
. -l (cq 4 idy) exp [/c2 —V—Z- (T/ (0 — o) — ik j; (@ — ag)ﬂ}} e kB

Here the terms, containing as their cofactor exponential functions with
large factor k? in the exponent, are the integrals of the edge effect. The
remaining terms are the integrals of the principal stressed state.

During formulation of the boundary conditions when o = 0y (¢ = ag) in
(4.7) one should neglect those terms which contain functions Cys d2’ €4 d4

(cl, dy, C3, d3) since they are sufficiently small. ¥For a long shell, in addi-
tion to this it is necessary to disregard those terms which contain functions
as, by, a4, by (al, by, ag, b3) when o = ay (a = 0aj).

Let us consider the case when a shell is short. We shall replace the

functions aj, bs, cj, dj by Al B | ¢®, p(3) (5 =1, 2, 3, 4) from the
formulae analogous to those in (3.13). These functions have comparable values
at both edges of the shell.

Thus, the problem is reduced to the determination of sixteen functions of
8.

Let us express the displacement ug, vg, wg and the angle of rotation Yg

through the unknown functions Aéj), Béj),_Céj), Déj) (j =1, 2, 3, 4). For the
determination of these functions let us use the conditions of (1.7) at the

boundaries a = o, and o = ap. We obtain eight equations, each of which may be
represented as _ i .
Pj cos kB + Qsin kB =0 (i=1,2..,8)

where P, and Q. are only the functions of B, and cos kB and sin kB depend also

on the parametér k. Let us here set P. =0 ..., Qj =0 (j=1,8). Thus, six-
teen equations are obtained with sixteen unknowns, which in contrast to those
in paragraph 3 are not separated into two independent systems. It is too cum-
bersome to construct the sought functions in the general form: it is much
simpler to calculate these functions at individual points.

For a long shell the fulfillment of the boundary conditions is much easier.
Let us calculate Aéj), Béj), Céj), Déj) at the boundary a = ap. In the first

approximation the function W, keeping in mind (4.7) and the symmetrical nature
of the boundary conditions (1.7), may be written as

-

W= {(szom © iK™Bo) exp [__ 11/—1;:‘ (%)% (@ — “‘)_l +

‘ 1—if A\
+ (kpco(l) + ikQD0(1)> exp [,__ ke ﬁl (T) (a —_— al)}} Cos ka (4 . 8)
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- Substituting (4.8) into (3.10) and (3.11) at the a = ay boundary we obtain:

12
W= (%—) [_ kAW L kB 1 5 (— kPC,D 4 quO<1>)] cos kB3
kS @ L 5 mitp @ +1p, () | o
v® = TAO + 5 (K™ B —+ kTD,\V) |sin kB
k2

wi® = = (K 4D + kPCoP) cos kB (4.9)

1 » 1/, o
o L. [(_".’..) " (kp+sco(1) + ;L.q+cD0(1)) + (—)%T> (kl+4110(l) —_— 1;m+4Bo(1))j cos k2

[114

ke :
Ty = — ’7?‘ (™ 1360 4 k1D, D) cos /3

s s 0
Sy = - [(.&.) (— KA — R A (%) (kp+200(1) - k'l'*?Do(l))_'i sin k3
1
p V2R

A ~ -2,
G = —;— [_ X - D 6 (K24, 4 kP 00(1>)] cos kB |

Ni= (2D — kP, W) cos kB

TABLE 3

When the boundary conditions of (1.7) are
w1 0 =1 |y = 1] va* =1 fulfilled the exponents 1, m, p, q have the values
which are given in Table 3.

—_ — —6 | —8
fn _lﬁ _3 4| —s6 Table 4 gives the values for stresses Ty, Sq,
p | 4| -3 | —4 -8 N; and G; when a = oy.
g -4 | =3 | —& | —6
TABLE 4
u° =1 =1 w°=1 Ay =1
|
ATy —(2p/ M) — k12(1—0)p/h| A2 (1—20) | —kT4(1—3)(2p /M)
A1 | —k12(—0)p /A | —(20/M)" | E(2M/p)0 — k3
ANy k2 (1 —s) L) =k (h/p)"Y 2 k) /p
G =R 1= (/N k4 /p — 0 (24 /o)
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